portion of $\mathrm{NH}_{4} \mathrm{Cl}$ and the NH_{3} was evapd after adding 100 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ and heating the mixt gently over a hot water bath. The stirred $\mathrm{Et}_{2} \mathrm{O}$ suspension was cooled, 100 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ satd with gaseous HCl was added, and the contents were stirred for 1 hr . The solids were filtered, washed with dry $\mathrm{Et}_{2} \mathrm{O}$, and treated with dry i PrOH . The alcohol soln was concd to 25 ml under reduced pressure, dry $\mathrm{Et}_{2} \mathrm{O}$ added, and crystn induced in an ice bath ($0-5^{\circ}$). The crude product was filtd and 3 crystn from $i-\mathrm{PrOH}-\mathrm{Et}_{2} \mathrm{O}$ afforded 1.6 g (84%) of analy tically pure cis $-2 \cdot \mathrm{HCl}$ as a white crystalline solid, mp 105-106 ${ }^{\circ}$ A nal. $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NSCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{S}, \mathrm{N}$: calcd, 10.03 ; found, 10.72 .
trans-2-Mercap tocyclobutylamine (2) Hydrochloride. trans-2 was prepd from trans $-18 \cdot \mathrm{HCl}$ by the method described for the cis isomer. This afforded $1.7 \mathrm{~g}(90 \%)$ of analytically pure trans $-2 \cdot \mathrm{HCl}$ as a white crystalline solid, mp $126-128^{\circ}$. Anal. $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NSCl}\right) \mathrm{C}$, H, N, S.

Biological studies were carried out using adipose tissue from nonfasted, white male Harlan Wistar rats according to methods previously published. ${ }^{21}$ All drug concentrations were added in 0.1 ml of aqueous solution. β-Mercaptoethylamine hydrochloride was purchased from Aldrich Chemical Co., Milwaukee, Wis., and used in these studies without further purification.

References

(1) D. T. Witiak, B. K. Sinha, O. S. Lee, and D. R. Feller, 163 rd National Meeting of the American Chemical Society, Boston, Mass., April 1972, Abstract MEDI 9.
(2) W. O. Foy, "Medicinal Chemistry," A. Burger, Ed., Wiley, New York, N. Y., 1970, Chapter 66; "Radiation Protection and Sensitization," H. Moroson, Ed., Sloan-Kettering Institute for Cancer Research, Rye, N. Y., 1970; "Marcello Quintiliani," Instituto Superiore di Sanita, Rome, Barnes and Noble, Inc., New York, N. Y., 1970.
(3) (a) P. Alexander and A. Charlesby, Nature (London), 173, 578 (1954); (b) B. Smaller and C. E. Avery, ibid., 183, 539 (1959).
(4) E. Y. Graevsky, I. M. Shapiro, M. M. Konstantinova, and N. F. Barakina, Initial Eff. Ioniz. Radiat. Cells, Proc. Int. Symp., 1960, 237 (1961).
(5) L. Eldjarn and A. Pihl, J. Biol. Chem., 225, 499 (1957).
(6) D. E. Potter and E. J. Walaszek, Pharmacology, 5, 359 (1971).
(7) D. H. Yu, S. Triester, and M. I. Gluckman, Pharmacologist, 13, 277 (1971).
(8) D. T. Witiak and M. C. Lu, J. Org. Chem., 35, 4209 (1970).
(9) A. Combell and H. N. Rydon, J. Chem. Soc., 3002 (1953).
(10) (a) E. Walton, A. F. Wagner, F. W. Bachelor, L. H. Peterson, F. W. Holly, and K. Folkers, J. Amer. Chem. Soc., 77, 5144 (1955); (b) F. G. Bordwell and W. A. Hewett, ibid., 79, 3493 (1957).
(11) W. E. Parham and E. L. Anderson, ibid., 70, 4187 (1948).
(12) E. R. Buchman, A. O. Reims, T. Skei, and M. J. Schlatter, ibid., 64, 2696 (1942).
(13) (a) T. Curtius, Ber., 23, 3023 (1890); (b) P. A. S. Smith, Org. React., 3, 337 (1946); (c) T. Curtius, J. Prakt. Chem., 50, 275 (1894).
(14) (a) L. Field and P. M. Gilles, Jr., J. Med. Chem., 13, 317 (1970) (b) F. I. Carroll, J. D. White, and M. E. Wall, J. Org. Chem., 28, 1236 (1963).
(15) J. Baddiley and E. M. Thain, J. Chem. Soc., 800 (1952).
(16) (a) R. Gelin, S. Gelin, and C. Boutin, C. R, Acad. Sci. Ser. C, 262, 1084 (1966); (b) J. P. Li, J. H. Biel, D. R. Van Harken, L. T. Harmanos, C. W. Dixon, and H. D. Taylor, J. Med. Chem., 13, 858 (1970).
(17) D. N. Calvert and J. J. Lech, J. Pharmacol. Exp. Ther., 171, 135 (1970).
(18) (a) D. H. Yu, S. Triester, and M. I. Gluckman, ibid., 180, 492 (1972); (b) D. H. Yu, S. Triester, and M. I. Gluckman, ibid., 177, 284 (1971).
(19) D. B. Stone, J. D. Brown, and A. A. Steele, Metab. Clin. Exp., 18,620 (1969).
(20) (a) D. T. Witiak, D. R. Feller, E. S. Stratford, R. E. Hackney, R. Nazareth, and G. Wagner, J. Med. Chem., 14, 754 (1971); (b) D. T. Witiak, E. S. Stratford, R. Nazareth, G. Wagner, and D. R. Feller, ibid., 14, 758 (1971).
(21) A. Schwartz and A. H. Laseter, Biochem. Pharmacol., 13, 337 (1964).
(22) G. Fassina, I. Maragno, and P. Dorigo, Biochem. Pharmacol., 16, 1439 (1967).

Antimalarials. 2. 2,6-Bis(aryl)-4-pyridinemethanols ${ }^{\dagger}, 1$

P. Blumbergs,* M. P. LaMontagne, A. Markovac, J. G. Moehring, A. B. Ash, and C. L. Stevens
Ash Stevens Inc., Detroit, Michigan 48202. Received January 21, 1972

A series of 2,6-bis(aryl)-4-pyridinemethanols, where aryl is substituted phenyl, were prepared and screened for antimalarial activity. Substituents in the two phenyl rings included $\mathrm{Cl}, \mathrm{Br}, \mathrm{F}$, and OCH_{3} and 112,6 -bis(phenyl)isonicotinic acids were prepared as starting materials. The amino alcohol side chain in the 4 position of the pyridine ring was varied to include a wide spectrum of α-alkyl(and dialkyl)aminomethyl groups. Among the 33 compounds, 26 were curative, 3 were active, and 4 were inactive at $640 \mathrm{mg} / \mathrm{kg}$ against Plasmodium berghei. The 3 most active compounds were curative at 40 $\mathrm{mg} / \mathrm{kg}$ and active at $20 \mathrm{mg} / \mathrm{kg}$.

The work reported here evolved from a single lead in the World War II program wherein α-di- n-butylaminomethyl-2,6-diphenyl-4-pyridinemethanol (SN 10760) showed quinine indices of 1.0 and 3 against two malaria strains in the duck, although only 0.3 against Plasmodium gallinaceum in the chick. ${ }^{2}$ It is interesting that the same compound (as WR 135642) in the Rane mouse screen ${ }^{\ddagger}$ is noncurative, but active, at $640 \mathrm{mg} / \mathrm{kg}$, admittedly against a different strain, Plasmodium berghei. Nevertheless, as will be shown, the data served to flag a lead which, by the introduction of

[^0]electronegative substituents in the two phenyl rings and by varying the alkyl groups in the amino alcohol side chain, has resulted in candidate antimalarials of a high degree of activity against Plasmodium berghei as measured by the Rane test. \ddagger
This paper will report the results for 29 2,6-bis(phenyl)-4 pyridinemethanols and 4 derivatives containing various substituents other than CF_{3} in the two phenyl rings. The results for compounds bearing CF_{3} groups on one or both phenyl rings are reported in a following paper.

Chemistry. Zecher and Krohnke ${ }^{4}$ reported a ring-closure reaction for the preparation of variously substituted pico-

Table I. 2,6-Bis(phenyl)isonicotinic Acids

lines, as well as certain 4,6-diaryl-2-picolinic acids.
The method was extended in this laboratory to the synthesis of 2,6 -bis(phenyl)isonicotinic acids by replacing the conjugated keto acid reactant of Zecher and Krohnke ${ }^{4}$ with substituted benzoylacrylic acids. ${ }^{5}$ The equation is shown in Table I, together with the 11 examples prepared in this work. Where the isonicotinic acid is symmetrical, the proper phenyl ring substituent is required on both reacting moieties. For unsymmetrical isonicotinic acids, the required substituent(s) may be present in either reactant.
The conversion of the isonicotinic acids to candidate antimalarials was accomplished by the procedure of Lutz and coworkers. ${ }^{6}$ The 11 intermediate bromomethyl ketones are listed in Table II. These were reduced with NaBH_{4} to yield crude epoxides which were treated with various amines to afford the candidate antimalarials of Table III (HCl salts). The compounds are listed in Table III according to the 2,6-bis(phenyl)-4-pyridyl group reflecting the isonicotinic acid from which they were prepared.

Biological Activity. The antimalarial activity against Plasmodium berghei in mice ${ }^{\ddagger}$ is presented in Table IV. The compounds are listed in the descending order of antimalarial activity according to both the 112,6 -bis(phenyl)-4-pyridyl basic structure categories, as well as the amino alcohol side chain within each category. Among the 29 compounds listed (excluding the derivatives $\mathbf{3 a}, \mathbf{4 a}, \mathbf{5 b}$, and 23b), 23 are curative at a dosage of $640 \mathrm{mg} / \mathrm{kg}$. The 3 most active compounds, 1,2 , and 3 , are curative at $40 \mathrm{mg} / \mathrm{kg}$ and are active at $20 \mathrm{mg} / \mathrm{kg}$. It is interesting that these 3 compounds possess a secondary amine configuration ($\mathrm{R}_{1}=\mathrm{H}$) in the side chain and that they are approximately one dosage level more active than the optimum dialkylaminomethyl analog (4).
In terms of compounds with the common di- n-butylaminomethyl side chain, the Rane data show that a single Cl substituent on each ring (4) resulted in optimum activity (except for the highly effective CF_{3} group which will be reported in a following paper). Increasing the number of Cl substituents to three (21) or four (23) resulted in a marked decrease in activity. Replacement of one Cl with Br (15), or both with $\mathrm{Br}(18)$, resulted in a somewhat decreased activity. F is equally as effective as Br (compare 16 with 15 and 18), but the activity dropped off dramatically as Cl was replaced with one H atom (25) or two H atoms (28).

Table II. Bromomethyl 2,6-Bis(phenyl)-4-pyridyl Ketones

No. ${ }^{\text {a }}$	Mp, ${ }^{\circ} \mathrm{C}$			Analyses
		Yield, $\% b$	Formula	
IIa	147-149 (EtOH)	72	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrCl}_{2} \mathrm{NO}$	C, H, N
IIb	154-156 (EtOH)	37	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{ClNO}$	C, H, N
IIC	155-158 (i - PrOH)	54	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrF}_{2} \mathrm{NO}$	C, H, N
IId	$\begin{aligned} & 171-172\left(\mathrm{C}_{6} \mathrm{H}_{6}-\right. \\ & \text { petr ether) } \end{aligned}$	62	$\mathrm{C}_{1} \mathrm{H}_{20} \mathrm{Br}_{3} \mathrm{NO}$	C, H, Br
IIe	$\begin{aligned} & 189-191(i-\mathrm{PrOH}- \\ & \left.\mathrm{CHCl}_{3}\right) \end{aligned}$	61	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrCl}_{4} \mathrm{NO}$	C, H
IIf	$\begin{aligned} & 136-137(\mathrm{EtOH}- \\ & \left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	58	$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrCl}_{3} \mathrm{NO}$	C, H, N
IIg	102-105 (EtOH)	50	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrClNO}$	C, H, N
IIh	138-140 (i - PrOH)	76	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrClNO}_{2}$	C, H, N
IIi	117-118 (EtOH)	82	$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrCl}_{2} \mathrm{NO}_{2}$	C, H, N
IIj	116-118 (EtOH)	83	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrNO}$	C, H, N
IIk		c	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{3}$	c

${ }^{a^{a}}$ For phenyl substituents, see Table I; IIa is prepared from Ia, etc.
${ }^{b_{\text {From }}}$ corresponding isonicotinic acid. ${ }^{c}$ Not isolated.

The $\mathrm{CH}_{3} \mathrm{O}$ group (26,27 , and 29) was the least effective of the substituents studied.
A comparison of dialkylaminomethyl analogs, where $\mathrm{R}_{1}=$ R_{2} in the 4-chlorophenyl series, shows that optimum activity was achieved with $\mathrm{R}_{1}=\mathrm{R}_{2}=1$-butyl (4); the descending order of activity is l-butyl (4) >1-hexyl (5) >1-propyl (8) $>$ methyl (10) $>$ ethyl (11) >1-pentyl (12) >1-heptyl (14).
Two derivatives of 4 were prepared, the N-oxide 4 a and the O-succinoyl derivative $\mathbf{4 b}$. Both possessed comparable activity to 4. The N-succinoyl derivative 3 a was completely inactive. The N-oxide 23a was comparable in activity to the parent compound 23.
It should be noted that the 2,6-bis(aryl)-4-pyridinemethanols were significantly less phototoxic than the 2 -phenyl-4-quinolinemethanols ${ }^{7}$ and would not be excluded from clinical trials for this reason. ${ }^{\S}$
§Personal communication from W. E. Rothe, Walter Reed Army Institute of Research.

Table III. 2,6-Bis(phenyl)-4-pyridinemethanols

${ }^{a}$ Yield based on bromomethyl ketones from Table II, except derivatives which are based on the parent amino alcohol. ${ }^{b}$ In addition to C , $\mathrm{H}, \mathrm{N} .{ }^{c}$ Free base. ${ }^{d} N$-oxide, HCl salt. ${ }^{e} O$-Succinoyl derivative, HCl salt. $f_{\text {Adamantyl. }} g_{N \text {-Succinoyl derivative }}$

All structure-activity relationships are applicable, of course, only to the test under consideration and the relationship in higher animals may be quite different.

Experimental Section ${ }^{\#}$

2,6-Bis(4-chlorophenyl)isonicotinic Acid (Ia). A stirred mixt of 4-chlorobenzoylacrylic acid ($2.11 \mathrm{~g}, 10$ mmoles), 4-chlorophen-

[^1]acylpyridinium bromide ($3.13 \mathrm{~g}, 10 \mathrm{mmoles}$), $\mathrm{AcOH}(10 \mathrm{ml}), \mathrm{Ac}_{2} \mathrm{O}$ (1 ml), and $\mathrm{NH}_{4} \mathrm{OAc}(6 \mathrm{~g}$) was refluxed for 4 hr . The hot mixt was dild with $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{ml})$, allowed to cool, and filtered. The solid was washed with $\mathrm{H}_{2} \mathrm{O}$ and dissolved in warm aqueous $2 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ (150 $\mathrm{ml})$. The soln was extd with $\mathrm{CHCl}_{3}(\times 5)$ and $\mathrm{Et}_{2} \mathrm{O}(\times 2)$, treated with charcoal while hot, and filtered. The filtrate was acidified with concd HCl to pH 2 and filtered. The solid product was washed with $\mathrm{H}_{2} \mathrm{O}$ and recrystd from EtOH to yield Ia ($1.85 \mathrm{~g}, 54 \%$), mp 286-288 ${ }^{\circ}$.

2-(4-Chlorophenyl)-6-(4-methoxyphenyl)isonicotonic Acid (Ih). A soln of 4-methoxybenzoylacrylic acid ${ }^{5}(20.6 \mathrm{~g}, 0.1 \mathrm{~mole}), 4-$ chlorophenacylpyridinium bromide ($31.2 \mathrm{~g}, 0.1$ mole), and $\mathrm{NH}_{4} \mathrm{OAc}$ $(85 \mathrm{~g})$ in $\mathrm{MeOH}(175 \mathrm{ml})$ was refluxed for 6 hr . The mixt was refrigerated overnight $\left(5^{\circ}\right)$. The ammonium salt was collected and dissolved in hot AcOH (250 ml), and the soln was allowed to cool. Filtration gave Ih ($16.6 \mathrm{~g}, 49 \%$), mp 240-242 .

Table IV. Antimalarial Activity of 2,6-Bis(phenyl)-4-pyridinemethanols

No.	R_{1}	R_{2}		 rease in m	- HCl $\left[\begin{array}{l} 3 \\ 4 \end{array}\right.$ vival time Dos	or no. of /kg	(C), five m			
			20	40	80	160	320	640		
2,6-Bis(4-chlorophenyl)- ${ }^{\text {b }}$										
1	H	2-Bu	10.4(A)	3C		5 C	$3 \mathrm{C}(2 \mathrm{TD})^{\text {b }}$	$2 \mathrm{C}(3 \mathrm{TD})^{b}$		
2	H	4-Hept	6.6(A)	3 C	3C	4 C	5 C	5 C		
3	H	1-Bu	10.8(A)	1C	2 C	3 C	5 C	5 C		
4	$1-\mathrm{Bu}$	1-Bu	2.3	15.7(A)	3 C	3 C	4 C	5 C		
$4 a^{c}$	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$	1.1	8.5(A)	1 C	3 C	5 C	5 C		
5	1-Hex	1-Hex	0.8	3.1	1 C	2 C	2 C	5 C		
$4 \mathrm{~b}^{d}$	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$	6.0	8.6(A)	17.0	5 C	5 C	5 C		
6	CH_{3}	$2-\mathrm{Bu}$	3.9	6.9(A)	14.3	5 C	5C	5 C		
7	CH_{3}	$1-\mathrm{Bu}$	0.4	3.8	12.6(A)	5 C	5 C	5 C		
8	1-Pr	1-Pr	0.6	2.2	10.2(A)	2 C	3 C	4 C		
9	CH_{3}	CH_{3}	0.2	0.4	0.8	1 C	3 C	5 C		
10	CH_{3}	$i-\mathrm{Bu}$	0.2	0.2	2.5	1 C	4 C	5 C		
11	Et	Et	0.4	0.8	4.6	19.2(A)	3 C	5 C		
12	1-Pent	1-Pent	2.1	5.9	7.1 (A)	12.5	2 C	4 C		
13	H	Ada f	0.4	1.0	1.5	4.9	3 C	3C		
14	1-Hept	1-Hept	0.5	0.7	0.9	6.0	9.3 (A)	11.7		
$3 a^{e}$		$1-\mathrm{Bu}$	Inactive					0.3		
2-(4-Bromophenyl)-6-(4-chlorophenyl)-										
15	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$	2.8	5.8	8.4(A)	1 C	4C	4C		
16 - $1-\mathrm{Bu}$ - 2,6-Bis(4-fluorophenyl)- 030 Cl										
17	1-Hex	1-Hex	0.2	2.0	5.4	6.0	9.6(A)	14.8		
18 2, 2,-Bis(4-bromophenyl)-										
18	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$	0.6	3.8	4.8	10.8(A)	3 C	3 C		
19	Et	Et		0.2	3.8	15.6(A)	2 C	4 C		
20	1-Hept	1-Hept			nactive			0.4		
2-(3,4-Dichlorophenyl)-6-(4-chlorophenyl)-										
2,6-Bis(3,4-Dichlorophenyl)-										
22	Et	Et			0.2	9.2(A)	2C	3 C		
23	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$	0.2	2.4	4.8	9.2(A)	1 C	1 C		
$23 a^{\text {c }}$	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$		0.6	4.0	9.3	12.9(A)	1 C		
24	1-Hept	1-Hept			nactive			0.4		
2-(4-Chlorophenyl)-6-phenyl-										
25	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$		0.6	4.6	8.6(A)	9.2	3 C		
26 2-(4-Chlorophenyl)-6-(4-methoxyphenyl)-										
27 2-(3,4-Dichlorophenyl)-6-(4-methoxyphenyl)-										
27	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$	0.4	1.4	6.9(A)	9.4	10.2	1 C		
28	1-Bu	$1-\mathrm{Bu}$		$\begin{gathered} 2,6-\mathrm{Bis}(\mathrm{p}) \\ 0.2 \end{gathered}$	1.8	3.2	6.0(A)	11.2		
29	$1-\mathrm{Bu}$	$1-\mathrm{Bu}$		is(4-metho	nyl)nactive			5.8		

$a_{\text {The test method, described in ref } 3 \text {, is a highly standardized procedure in which the } P \text {. berghei causes death of control mice at essentially }}$ 6.2 days. An increase in the mean survival time of 5 mice by more than 2.5 days beyond this time is statistically significant. Mice surviving more than 60 days are regarded as cured (C). A candidate drug is considered active (A) at a given dosage if one or more mice are alive on day 14. ${ }^{b} \mathrm{TD}=$ toxic death. ${ }^{c} N$-Oxide. ${ }^{d} O$-Succinate. ${ }^{e} N$-Succinate. $f_{\text {Adamantyl }}$

The above two procedures are representative of the prepn of the isonicotinic acids of Table I.

Bromomethy1 2-(4-Chlorophenyl)-6-(4-methoxyphenyl)-4pyridyl Ketone (IIh). 2-(4-Chlorophenyl)-6-(4-methoxyphenyl)isonicotinic acid (Ih) $(15 \mathrm{~g})$ in $\mathrm{SOCl}_{2}(175 \mathrm{ml})$ was refluxed 4 hr . Excess SOCl_{2} was removed, and the solid was recrystd from $\mathrm{C}_{6} \mathrm{H}_{6}$ to yield the acid chloride ($14.1 \mathrm{~g}, 89 \%$) mp 104-106 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$. The acid chloride (8 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ $\mathrm{ml})$ was added slowly to a soln of $\mathrm{CH}_{2} \mathrm{~N}_{2}(c a .5 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(350 \mathrm{ml})$. The mixt was held at 0° overnight. Excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ and solvents were
removed (aspirator) to give a low-melting diazo ketone (8 g) with acceptable ir spectrum. The diazo ketone (4 g) in $\mathrm{CHCl}_{3}(15 \mathrm{ml})$ was added to a mixt of 48% aqueous $\mathrm{HBr}(7.5 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(50$ ml) at 5°. The soln was stirred 3 hr at 25° and was washed successively with aqueous $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ (x 2). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed. The solid (4.3 g) was recrystd from i - PrOH to yield ITh ($3.9 \mathrm{~g}, 76 \%$ from Ih), mp $138-140^{\circ}$. The above procedure is typical of the prepn of the bromomethyl ketones of Table II.
α-Di- n-butylaminomethyl-2,6-bis(3,4-dichlorophenyl)-4-pyridine-
methanol Hydrochloride (23). Bromomethyl 2,6-bis(3,4-dichloro-phenyl)-4-pyridyl ketone (IIe) (2 g) was suspended in EtOH (40 ml). $\mathrm{NaBH}_{4}(250 \mathrm{mg})$ was added, and the mixt was stirred for 1 hr at room temp. $\mathrm{HCl}\left(3 N\right.$) was added to decompose excess NaBH_{4}, and the mixt was neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Water (50 ml) was added, and the mixt was filtered. The solid was washed with $\mathrm{H}_{2} \mathrm{O}$ (x 2, 20 $\mathrm{ml})$ and dried in vacuo. There was obtained $1.6 \mathrm{~g}(95 \%)$ of crude epoxide, $\operatorname{mp} 138-145^{\circ}$, containing ca. 5% of an unknown by tlc. The epoxide (1.5 g) and ($\left.n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{NH}(5 \mathrm{ml})$ in $\mathrm{EtOH}(25 \mathrm{ml})$ were heated at reflux for 3 hr (complete by tlc). Solvent and excess amine were removed in vacuo. The residual oil in $\mathrm{Et}_{2} \mathrm{O}-i-\mathrm{PrOH}$ was treated with a satd soln of HCl in i - PrOH . The ppt was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($\mathrm{x} 3,20 \mathrm{ml}$). Recrystn from EtOH afforded $1.5 \mathrm{~g}(71 \%)$ of 23 , mp $220-222^{\circ}$. The above procedure is typical of the prepn of the 4 pyridinemethanols described in Table III.

Derivatives. The N-oxides 4 a and 23 a were prepd by treating the parent compds 4 and 23, respectively (as the free bases), in $\mathrm{Et}_{2} \mathrm{O}$ with $40 \% \mathrm{AcO}_{2} \mathrm{H}$ in AcOH . The mixt was stirred 2 hr at 25°. For 4 a , the soln was washed with $20 \% \mathrm{NaOH}(\mathrm{x} 2)$ and water (x 2), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed, and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$. $\mathrm{Et}_{2} \mathrm{O}-\mathrm{HCl}$ was added, and the ppt was recrystd (EtOH) to give $4 \mathrm{a}\left(\mathrm{HCl} \mathrm{salt}\right.$), $\mathrm{mp} 172-174^{\circ}$. In the case of 23a, the crude product pptd from the $\mathrm{Et}_{2} \mathrm{O}$ reaction mixt as the AcOH salt. This ppt was slurried in MeOH and treated with a little concd HCl . Water was added to the soln to ppt $23 \mathrm{a}(\mathrm{HCl}$ salt $), \mathrm{mp} 174-175^{\circ}$ (EtOH).

The O-succinoyl derivative $\mathbf{4 b}$ was prepd by heating parent compd 4 (free base) and succinic anhydride in $\mathrm{Me}_{2} \mathrm{CO}$ for 1 hr . The solvent was removed. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and treated with dry HCl . The mixt was stirred at 25° with an equal vol of $\mathrm{H}_{2} \mathrm{O}$
for 1 hr . Filtration gave crude $\mathbf{4 b}, \mathrm{mp} 149-153^{\circ}(\mathrm{HCl}$ salt), recrystd from $\mathrm{CH}_{3} \mathrm{CN}$.

The N-succinoyl derivative 3a was prepd from parent compd 3 (free base) by treating an $\mathrm{Me}_{2} \mathrm{CO}$ soln with succinic anhydride at 25° for 1 hr . The solvent was removed and recrystn from $\mathrm{C}_{6} \mathrm{H}_{6}$ gave 3a, mp 104-107 ${ }^{\circ}$
Acknowledgment. The advice and timely suggestions of Drs. T. R. Sweeney and R. E. Strube of the Walter Reed Army Institute of Research are gratefully acknowledged.

References

(1) A. Markovac, C. L. Stevens, and A. B. Ash, J. Med. Chem., 15, 490 (1972).
(2) F. Y. Wiselogle, "Survey of Antimalarial Drugs, 1941-1945," Vol. I, J, W. Edwards, Ann Arbor, Mich., 1946, p 1000.
(3) T. S. Osdene, P. B. Russell, and L. Rane, J. Med. Chem., 10, 431 (1967).
(4) (a) W. Zecher and F. Krohnke, Chem. Ber., 94, 690 (1961); (b) ibid., 94, 698 (1961); (c) F. Krohnke and W. Zecher, Angew. Chem. Int. Ed. Engl., 1, 626 (1962).
(5) D. Papa, E. Schwenk, F. Villiani, and E. Klingsberg, J. Amer. Chem. Soc., 70, 3356 (1948).
(6) R. E. Lutz, P. S. Bailey, M. T. Clark, J. F. Codington, A. J. Deinet, J. A. Freek, G. H. Harnest, N. H. Leake, T. A. Martin, R. J. Rowlett, Jr., J. M. Salsbury, N. H. Shearer, Jr., J. D. Smith, and J. W. Wilson, III, ibid., 68, 1813 (1946).
(7) E. R. Atkinson and A. J. Puttick, J. Med. Chem., 11, 1223 (1968); 13, 537 (1970).

Folate Antagonists. 2.

2,4-Diamino-6-\{[aralkyl and (heterocyclic)methyl]amino\}quinazolines, a Novel Class of Antimetabolites of Interest in Drug-Resistant Malaria and Chagas' Disease ${ }^{\dagger}$, \ddagger

John Davoll, A. M. Johnson, H. J. Davies,
Chemistry Department, Research and Development Division, Parke, Davis and Company, Hounslow, Middlesex, England

O. D. Bird, J. Clarke, and Edward F. Elslager*

Chemistry Department, Research and Development Division, Parke, Davis and Company, Ann Arbor, Michigan 48106. Received February 16, 1972

Abstract

Forty-six 2,4-diamino-6-\{[benzyl and (heterocyclic)methyl]amino\}quinazolines (VI) were synthesized from the appropriate 2,4-diamino-6-nitroquinazoline (III) by reduction to the corresponding 2,4,6-triaminoquinazoline (IV), condensation of IV with the appropriate benzaldehyde or heterocyclic aldehyde to give the requisite Schiff base V , and reduction of V with H_{2} over Raney Ni or with NaBH_{4}. 2,4-Di-amino-6-\{[(2-chloro-1-naphthyl)methyl]amino\}quinazoline (70) and 2,4-diamino-6-\{[(2-naphthyl)methyl]aminołquinazoline (71) were prepared similarly from 2,4,6-triaminoquinazoline and 2-chloro-1-naphthaldehyde and 2-naphthaldehyde, respectively. The condensation of 2 equiv of 2,4,6-triaminoquinazoline with 1 equiv of terephthalaldehyde or $4,4^{\prime}$-(ethylenedioxy) dibenzaldehyde followed by reduction of the Schiff bases afforded $6,6^{\prime}-[p$-phenylenebis(methyleneimino)] bis(2,4-diaminoquinazoline) (76) and 6,6'-[ethylenebis(oxy-p-phenylenemethyleneimino)] bis(2,4-diaminoquinazoline) (77). Treatment of 2,4,6triaminoquinazoline with an acetophenone diethyl ketal in the presence of I_{2} gave the corresponding 2,4-diamino-6-[(α-methylbenzylidene)amino]quinazolines, which upon reduction with NaBH_{4} or $\mathrm{H}_{2} / \mathrm{PtO}_{2}$ afforded the requisite 2,4 -diamino-6-[$(\alpha$-methylbenzyl)aminolquinazolines $(66,68,69)$. Forty-four compds were active against Plasmodium berghei in mice and 27 ranged from 7 to 190 times as potent as quinine hydrochloride. 2,4-Diamino-6-[(3,4-dichlorobenzyl)amino] quinazoline (15) also exhibited strong effects against cycloguanil-, pyrimethamine-, DDS-, and chloroquine-resistant lines of P. berghei. Against P. cynomolgi in rhesus monkeys, 19 compds eliminated asexual parasites within 1-8 days, and 7 were curative. Twenty-eight quinazolines were active against Trypanosoma cruzi in chick embryo cell culture at $0.39-6.25 \mu \mathrm{~g} / \mathrm{ml}$, and six showed antitrypanosomal effects in mice. Data on the inhibitory effects of the triaminoquinazolines against Streptococcus faecalis R (Strep. faecium var. durans), Strep. faecalis A (aminopterin-, methotrexate-resistant), Lactobacillus plantarum, and Pediococcus cerevisiae are presented, and overall structure-activity relationships are discussed.

Recent reports from these laboratories have described the synthesis and biological properties of various quinazoline

[^2]analogs of folic acid. ${ }^{2-7}$ Among them, several 2,4-diaminoand 2-amino-4-hydroxyquinazoline Glu and Asp analogs ${ }^{2}$ (I , where $x=1$ or $2 ; \mathrm{R}=\mathrm{H}$ or CH_{3}; and $\mathrm{X}=\mathrm{OH}$ or NH_{2}) exhibit potent inhibitory effects against Streptococcus faecalis R (ATCC 8043) ${ }^{4}$ [Strep. faecium var. durans (SF/0)], ${ }^{8,9}$

[^0]: \dagger This work was supported by the U. S. Army Medical Research and Development Command under Contract No. DADA1 7-69-C9065. This is Contribution Number 991 from the Army Research Program on Malaria.
 \ddagger The antimalarial tests were performed by Dr. Leo Rane of the University of Miami. ${ }^{3}$ See foot note a, Table IV. Testing results were supplied through the courtesy of Drs. Thomas R. Sweeney and Richard E. Strube of the Walter Reed Army Institute of Research.

[^1]: \#Melting points were taken in open capillary tubes using a Thomas-Hoover melting point apparatus and are uncorrected. Elemental analyses were performed by Midwest Microlab, Ltd., Indiana polis, Ind. Analyses indicated by element symbols agree with calculated values within $\pm 0.4 \%$.

[^2]: \dagger This is paper 24 of a series on antimalarial drugs. For paper 23, see ref 1 .
 \ddagger For the previous paper on folate antagonists, see ref 2.

